
G&D, 17.11.2005

Dr. Amar Khelil

Formal Modeling in Test Development at G&D

Formal Modeling in Test Development at G&D

Public Presentation

20051117_GPWG_new.ppt - akh - 16.11.2005 - 2

•1 (3)Test Development; Situation and Requirements

•2 (6)Test Development; Standard Procedure and Limitation

•3 (2) Methodology proposed by LEIRIOS

•4 (3) Pilot project with LEIRIOS (01.05-03.05)

•5 (3) On-going projects with LEIRIOS

•6 (2) Issues/Conclusions

Formal Modeling in Test Development at G&D

Public Presentation

20051117_GPWG_new.ppt - akh - 16.11.2005 - 3

1-1 Documents involved in Test Development

Specification 1

Package: N1-1

· Req1

· Req2

Package: N1-2

· Req1

· Req2

 Specification 2

Package: N2-1

· Req1

· Req2

Package: N2-2

· Req1

· Req2

Implementations

(codes)

· Implementation Name 1

· Implementation Name 2

Implementations

(docs)

System Tests

T-Package: -> N1-1

· Test-script 1-1

· Test-script 1-2

T-Package: ->N2-2

· Test-script 2-1

· Test-script 2-2

Test doc

Test Plan: ->N1-1

· Req 1-1

· Req 1-2

Test Plan: ->N2-2

· Req 2-1

· Req 2-2

Formal Modeling in Test Development at G&D

Public Presentation

20051117_GPWG_new.ppt - akh - 16.11.2005 - 4

1-2 Test Development; one Use Case

Specification 1

(a new version is

published)

Package: N1-1

· Req1-1-1

· Req1-1-2

Package: N1-2

· Req1-2-1

· Req1-2-2

 Specification 2

Package: N2-1

· Req2-1-1

· Req2-1-2

Package: N2-2

· Req2-2-1

· Req2-2-2

Implementations

(codes)

· Implementation Name 1

· Implementation Name 2

· Implementation New Name

Implementations

(docs)

System Tests

T-Package: -> N1-1

· Test-script 1-1-1

· Test-script 1-1-2

T-Package: ->N2-2

· Test-script 2-2-1

· Test-script 2-2-2

Test doc

Test Plan: ->N1-1

· Req 1-1-1

· Req 1-1-2

Test Plan: ->N2-2

· Req 2-2-1

· Req 2-2-2

Formal Modeling in Test Development at G&D

Public Presentation

20051117_GPWG_new.ppt - akh - 16.11.2005 - 5

1-3 Requirements to Test Development

 Identify all relevant existing tests for existing targets

 Identify test development needs (new tests, modified existing

tests) for new targets

For all targets

Reproducibility of tests

Measurement of Test Coverage (?)

Formal Modeling in Test Development at G&D

Public Presentation

20051117_GPWG_new.ppt - akh - 16.11.2005 - 6

2.1 Standard Procedure in place

Proof of Reproducibility and Test Coverage is done by tracing the ‚requirement

tags‘ automatically (DOORS scripts)

To read the specification

docs (incl. internal

implementation docs)

=> To identify behaviors

and to name them (with

‚Requirement Tags’)

To write Test Plans

accounting for each

behavior

To develop

dedicated java

applets

To develop tests

scripts = {test

cases}

- Each test case

corresponds to one

behavior

To run tests

scripts on

target

Formal Modeling in Test Development at G&D

Public Presentation

20051117_GPWG_new.ppt - akh - 16.11.2005 - 7

2-2 Tracing the Requirement Tags

Project step: Execution

Project step: Development

1 To write a test plan

IN : Docs [External Specifications]

stored/managed in DOORS

IN: Internal Docs /Consultation with

developers

OUT: Test Plan (in DOORS)
OUT: Test scripts for JCTS, CASCATE

4 To check test coverage

OUT: Test Coverage report

2 To develop test scripts (incl. test

applets)

Linking through requirement tags

3 To run real tests
OUT: Test Log Files (incl. Requirement Tags)

Formal Modeling in Test Development at G&D

Public Presentation

20051117_GPWG_new.ppt - akh - 16.11.2005 - 8

2.3 Test Plan

 is generated manually, as a list of Test Case Definitions (each one

corresponding to a DOORS item)

Correctness is assured by Reviews

Formal Modeling in Test Development at G&D

Public Presentation

20051117_GPWG_new.ppt - akh - 16.11.2005 - 9

2.4 Test Plan

 is generated manually, as a list of Test Case Definitions (each one

corresponding to a DOORS item)

Correctness is assured by Reviews

Problem:

The Model of Behavior implicitly assumed by the Test Developer

is not visible. Therefore, it is difficult to assess Test Coverage as

regards content.

Formal Modeling in Test Development at G&D

Public Presentation

20051117_GPWG_new.ppt - akh - 16.11.2005 - 10

2.5 Example of model = Behavior(state of machine)

MANAGE CHANNEL

[open]

Card has

concept of

LC

NO

MANAGE CHANNEL [open]

dispatched to currently selected

applet
Selected applet

is a SD?

YES

- SD throws an EXCEPTION

requirement_2

Card LOCKED

or

TERMINATED

YES

YES

NO

- Card throws an EXCEPTION

- LC shall not be opened

Requirement_3

Free LC?

NO

YES

- Card throws an EXCEPTION

- LC shall not be opened

Requirement_4

Default

Selected

applet

LOCKED

YES - active applet on additional

LC is the ISD

Requirement_5

NO

Restrictions

with regard to

multi-

selectable

option ?

YES
- Card throws an EXCEPTION

- LC shall not be opened

Requirement_6

NO- Default selectable is selected on additional LC

Requirement_7

NO
- Behavior unspecified

requirement_1 (?)

MANAGE CHANNEL [open] on basic LC; behavior described by GP2.1.1, JC2.2 not accounted for.

Formal Modeling in Test Development at G&D

Public Presentation

20051117_GPWG_new.ppt - akh - 16.11.2005 - 11

2.6 Test Plan Revisited

The Model of Behaviors is visible in Test Plan

To read the specification

docs (incl. internal

implementation docs)

=> To identify behaviors

and to name them (with

‚Requirement Tags’)

To write Test Plans

accounting for each

behavior

To develop

dedicated java

applets

To develop tests

scripts = {test

cases}

- Each test case

corresponds to one

behavior

To run tests

scripts on

target

To develop

behavior model /

state machine on

which the test plan

is founded

Formal Modeling in Test Development at G&D

Public Presentation

20051117_GPWG_new.ppt - akh - 16.11.2005 - 12

3.1 Methodology proposed by LEIRIOS

To read specification

docs (incl. internal

implementation

docs)

To develop dedicated

Java applets

To run tests

scripts on

target

- To describe the

behaviors in a

Formal Language

- To identify them

with Requirement

Tags

To Generate

- Abstract Tests Cases

- Traceability matrices

To convert/export

Abstract Test Cases

into Real Test Cases

(to be processed by the

program simulating

card terminal)

Formal Modeling in Test Development at G&D

Public Presentation

20051117_GPWG_new.ppt - akh - 16.11.2005 - 13

3.2 LEIRIOS Test Generator (LTG)

Formal Language used to identify behaviors is the B-Method

Each Test Object is modelled as a B-Machine by means of

Open-Source Editor JEdit, extended with B-plugins

LTG provides an environment in order to define/manage Test

Campaigns (GUI, Batch mode) and corresponding Abstract Test

Cases (TC)

LTG stores all TC pertaining to a specific model into dedicated

DB and provides Treacibility Matrices (Coverage Check)

LTG provides an interface (accessible through Open-Source

groovy Script Language) in order to convert Abstract TC into

Real TC (i.e. G&D proprietary CASCATE-Format)

Formal Modeling in Test Development at G&D

Public Presentation

20051117_GPWG_new.ppt - akh - 16.11.2005 - 14

4.1 Pilot Project (LEIRIOS/G&D-3FE-24, 01.05-03.05)

Focus:

To assess feasibility of the LEIRIOS methodology on a limited part

of GP:

• Handling of Secure Channels (SCP01-simplified)

• Handling of Logical Channels (very simplified)

Output:

• A syntactical B-model + a set of Abstract tests

• A functional B-model + a set of Abstracts tests

• final report by G&D (in German)

Version of LTG: 2.0

Formal Modeling in Test Development at G&D

Public Presentation

20051117_GPWG_new.ppt - akh - 16.11.2005 - 15

4.2 Pilot Project with LTG: Syntactic Model
 Item Number Remarks

1 Set 7 Static part of the model description

2 Constants 27 Static part of the model description

3 State variables 0
Dynamic part of the model description

- The behavior of machine does not depend on its states

4 Operations 6

Dynamic part of the model description

- each operation represents an APDU command or part of it
1. UNKNOWN_APDU
2. SELECT_APDU
3. MANAGE_CHANNEL_APDU
4. INITIALIZE_UPDATE_APDU
5. EXTERNAL_AUTHENTICATE_APDU
6. SET_STATUS_APDU_CARD

- in all cases the input parameters of operations refer to the APDU header

5 Test campaigns 2
- AllLogicalChannels (19 test cases generated)

- BasicLogicalChannel (76 test cases generated)

6 Missing tests >0

- Due to deficiency of the syntax model (no state variables accounted for)

- Due to specific values of the test generation parameters

- Due to the static model description (sets), there are non reachable test cases

Tab. Synopsis of the Syntactic Model (314 lines of code, 408 lines of code + comments)

Formal Modeling in Test Development at G&D

Public Presentation

20051117_GPWG_new.ppt - akh - 16.11.2005 - 16

4.3 Pilot Project with LTG: Functional Model

 Item Number Remarks

1 Set 8 Static part of the model description

2 Constants 3
Static part of the model description

- All defined within the DEFINITION clause

3 State variables 20 Dynamic part of the model description

4 Operations 8

Dynamic part of the model description

- each operation represents an APDU command or part of it
1. MANAGE_CHANELL_APDU_OPEN
2. MANAGE_CHANELL_APDU_CLOSE
3. SELECT_APDU_FIRST_BY_COMPLETE_NAME
4. SET_STATUS_APDU_CARD
5. INITIALIZE_UPDATE_APDU_SCP01
6. INITIALIZE_UPDATE_APDU_SCP02
7. EXTERNAL_AUTHENTICATE_APDU

8. GET_STATUS_APDU_ISD_TABLE922

- in all cases the input parameters of operations refer to the APDU header

5 Test campaigns 4

- CardLifCycleState (26 test cases generated)

- ManageChannel (11 test cases generated)

- Select (13 test cases generated)

- SM_SCP_01 (19 test cases generated)

6 Missing tests ? Analysis is performed within GP2.1.1

Tab. Synopsis of the Functional Model (862 lines of code, 1056 lines of code + comments)

Formal Modeling in Test Development at G&D

Public Presentation

20051117_GPWG_new.ppt - akh - 16.11.2005 - 17

5.1 On-going Projects with LEIRIOS 04-11.2005

Focus: Development of (new) tests for the following packages

• Secure Channels SCP01/SCP02 (M. Uminska, 3FE-22)

• Life Cycle State Machine (ISD, SD, Applets) (dropped)

• Dispatcher (A. Khelil, 3FE-24)

Formal Modeling in Test Development at G&D

Public Presentation

20051117_GPWG_new.ppt - akh - 16.11.2005 - 18

5.2 Overview of Dispatcher project -1-

The Dispatcher model/machine identifies

• all behaviors specified in JC2.2 and GP2.1.1

• additional unspecified behaviors detected by simply attempting

to logically close the model

=> requires input by the implementers

• behavioral contradictions between JC2.2 and GP2.1.1 (1)

The Dispatcher model/machine does not explicitly accounts for

• Secure Messaging

Conversion into Real Test Cases not yet started

Formal Modeling in Test Development at G&D

Public Presentation

20051117_GPWG_new.ppt - akh - 16.11.2005 - 19

5.3 Overview of Dispatcher project -2-

 Item Number Remarks

1 Set 14 Static part of model description

2 Constants 32 Static part of model description

3 State variables 26 Dynamic part of model description

4 Operations 8

Dynamic part of the model description

- each operation in test focus represents at least one APDU command
1. RESET_procedure (test focus)

2. APDU_SELECT_byName (test focus)

3. APDU_MANAGE_CHANNEL_open (test focus)

4. APDU_MANAGE_CHANNEL_close (test focus)

5. COMMAND_2_DISPATCH_NO_SM_NO_CDATA (test focus)

6. TRANSITION_LCS_OF_CLIENT (preamble/postamble)

7. TRANSITION_LCS_OF_SD (preamble/postamble)

8. TRANSITION_LCS_OF_CARD (preamble/postamble)

5 Behavior switches 10

6 Test campaigns - On-going

7
Missing tests

(not in model)
- Not yet analyzed

Tab. Synopsis of the Dispatcher Model (3876 lines of code, 5770 lines of code + comments)

Formal Modeling in Test Development at G&D

Public Presentation

20051117_GPWG_new.ppt - akh - 16.11.2005 - 20

6.1 Issues
Model Development and Animation

 For first realistic projects, support by B (and Tool) experts is necessary

Test Generation

 Different ways to write a behavior impact on the Automated Test Case Generation (the
tool may or may not find preambles)

Conversion into Real Test Cases

 The Test Script Language must support a level of abstraction compatible with the LTG
output

LTG-Tool (versions 2->2.1.1)

 Bugs and/or cryptic error messages (LEIRIOS reacts quickly in those cases)

 LTG 2-2.1.1. does not fit completely into the G&D Test Development Process

 Documentation to LTG-DB Interface (for conversion into Real Test Case) is missing

 Version 2.2 (End of 2005) will address/solve most pending issues

Formal Modeling in Test Development at G&D

Public Presentation

20051117_GPWG_new.ppt - akh - 16.11.2005 - 21

6.2 Conclusions

Formal Modeling of Specifications improves significantly the Test
Development Process

 If LTG-2.2 keeps its promise, there are good chances that B Modeling, in
conjunction with LTG, will be adopted as approved Test Development
Procedure by G&D

Are there alternative experiments with Formal Modeling of Specifications
targeting the Test Generation Process out there ?

Formal Modeling in Test Development at G&D

Public Presentation

20051117_GPWG_new.ppt - akh - 16.11.2005 - 22

THANK YOU FOR ATTENTION

Formal Modeling in Test Development at G&D

Public Presentation

20051117_GPWG_new.ppt - akh - 16.11.2005 - 23

•The B Method was developed in order to automatically verify the consistency of

logical structures (e.g. programs) , whereas consistency means that static and

dynamic parts of model fits together

•Therefore B allows description of an object including :

• Static Description: What is this object made of?

=> includes sets, constants, invariants

• Dynamic Description: How does it behaves?

=> includes variables, initialisation state, and all possible state transition

(operations)

B Method

Formal Modeling in Test Development at G&D

Public Presentation

20051117_GPWG_new.ppt - akh - 16.11.2005 - 24

Example of B model (part I) [see B-method, S. Schneider]

Nr. Klausel Eigenschaft Beispiele / Kommentar

1 MACHINE obligatorisch

MACHINE Hotelguests(sze)

- sze number of rooms in hotel

- ltg (LEIRIOS Tool) unterstützt keine Parameter

2 CONSTRAINT optional
CONSTRAINTS sze  N

- Da sich die Klausel nur auf Parameter beziehen kann, wird

sie auch nicht von ltg unterstützt.

3 SETS optional

ROOM; NAME; REPORT = {present, absent}

- Sätze werden Großgeschrieben

- ltg unterstützt nur definierte finite SÄTZE

4 CONSTANTS optional
empty

- Variablen werden kleingeschrieben.

5 PROPERTIES optional
Card(ROOM) = sze  empty  NAME

- Es besteht die Möglichkeit in diesem Abschnitt das

Äquivalent eines C-Makro zu definieren

Formal Modeling in Test Development at G&D

Public Presentation

20051117_GPWG_new.ppt - akh - 16.11.2005 - 25

Example of a B model (part II) [see B-method, S. Schneider]

Nr. Klausel Eigenschaft Beispiele / Kommentar

6 VARIABLES obligatorisch guests

7 INVARIANT obligatorisch guests  ROOM  NAME

8 INITIALISATION obligatorisch guests := ROOM x {empty}

9 OPERATIONS obligatorisch

guestcheckin(rr,nn) =

PRE rr  ROOM  nn  NAME  nn  empty
THEN guests(rr) := nn

END;

guestcheckout(rr) =

PRE rr  ROOM
THEN guests(rr) := empty

END;

nn  guestcheckquery(rr) =

PRE rr  ROOM
THEN nn := guests(rr)

END;

- Jede einzelne Operation beschreibt einen ‚atomaren‘

Übergang des Maschinenzustandes.

- Innerhalb einer Operation kennzeichnet das Schlüsselwort

PRE Vorbedingungen, die gelten müssen, damit der

Übergang durchführbar ist.

- Das Schlüsselwort THEN kennzeichnet die Beschreibung

der Zustandsänderung (welche Zustandsvariablen werden

wie aktualisiert)

- Das Schlüsselwort END beendet die Definition einer

Operation

10 END obligatorisch Schließt die Maschinenbeschreibung.

Formal Modeling in Test Development at G&D

Public Presentation

20051117_GPWG_new.ppt - akh - 16.11.2005 - 26

LTG: Defining a Test campaign -1-
No. Item Remarks

1 selection

- defines , which part of the B model must be accounted for in the test case

generation:

1. Which Operations are included?

2. Which state variables?

2 coverage

- For each single operation (of the B Model to test), the coverage of behavior is

controlled by two values:

Value 1:

1. [decision coverage],

2. [decision/condition coverage],

3. [modified condition/decision coverage],

4. [multiple condition coverage],

Value 2:

1. [with distribution]

2. [without distribution]

Formal Modeling in Test Development at G&D

Public Presentation

20051117_GPWG_new.ppt - akh - 16.11.2005 - 27

LTG: Defining a Test campaign -2-
No. Item Remarks

3

Equivalent

boundary

values

- For each operation to test, possible option values are:

1. [one value],

2. [several values],

3. [all values]

4

Pairs of

behavior

coverage

- For each operation to test, the user can define operations that must follow the

actual test case to be included. Following options are available:

1. [All pairs]: all accessible behaviors are included in the test case output

2. [Related pairs]: only behaviors are selected, that manipulate state

variables, that were also manipulated in the actual test case

3. [Effect-cause]: only behaviors are selected, that manipulate state

variables, whose values have been changed by the actual test case

5 preamble

The user can enter additional data to control the calculation of preambles.

1. Whether preambles be calculated or not?

2. maximal number of operations in one preamble

3. maximal duration of calculation for one preamble

4. Search algorithm : [width / depth]

5. Search algorithm : [backward/forward]

6. Filter of operations (that can possibly be included)

7. Manual input of a preambles

6 postamble
- Like preambles LTG can be triggered to calculate postambles, performing a return

to the initial state of execution after a test case has been checked

