
MM2.2: Interpolation

Introduce the basic terms:

– interpolation polynomial;
– Lagrange interpolation polynomial;
– Newton interpolation polynomial;
– interpolation points (nodes);
– linear interpolation;
– piecewise linear interpolation;
– deviation;
– interpolation error.

We shall be primarly concerned with the interpolation of a function of one variable:
given a function f(x) one chooses a function F (x) from among a certain class of functions
(frequently, but not always, the class of polynomials) such that F (x) agrees (coincides) with
f(x) at certain values of x. These values of x are often referred to as interpolation points, or
nodes, x = xk; k = 0, 1, . . ..

The actual interpolation always proceeds as follows: the function f(x) to be interpolated is
replaced by a function F (x) which

a) deviates as little as possible from f(x);
b) can be easily evaluated.

Assume that it is given a function f(x) defined in an interval a ≤ x ≤ b and its values
f(xi) = fi (ordinates) at n + 1 different nodes x0, x1, . . . , xn lying on [a, b] are known. We
seek to determine a polynomial Pn(x) of the degree n which coincides with the given values of
f(x) at the interpolation points:

Pn(xi) = fi (i = 0, 1, . . . n). (1)

The possibility to solve this problem is based on the following theorem:
there is exactly one polynomial Pn(x) of degree less or equal n which satisfies the conditions

(1).
For n = 1 when P1(x) = Ax + B is a linear function, this statement is proved below. This

simplest case corresponds to the linear interpolation by the straight line through two points
(x0, f0) and (x1, f1).

Given a function f(x) defined in an interval a ≤ x ≤ b we seek to determine a linear function
F (x) such that

f(a) = F (a), f(b) = F (b). (2)

Since F (x) has the form

F (x) = Ax + B (3)

for some constants A and B we have

F (a) = Aa + B, F (b) = Ab + B. (4)

Solving for A and B we get

A =
f(b)− f(a)

b− a
, B =

bf(a)− af(b)
b− a

(5)

1



and, by (2),

F (x) = f(a) +
x− a
b− a

(f(b) − f(a)). (6)

One can verify directly that for each x the point (x, F (x)) lies on the line joining (a, f(a))
and (b, f(b)) (see Fig. 1).

We can rewrite (6) in the form

F (x) = w0(x)f(a) + w1(x)f(b) (7)

where the “weights”

w0(x) =
b− x
b− a

, w1(x) =
x− a
b− a

. (8)

If x lies in the interval a ≤ x ≤ b, then the weights are nonnegative and

w0(x) + w1(x) = 1, (9)

hence, in this interval

0 ≤ wi(x) ≤ 1, i = 0, 1. (10)

Evidently, if f(x) is a linear function, then interpolation process is exact and the function
F (x) from (5) coincides with f(x): the bold curve and the dot line on Fig. 1 between the points
(a, f(a)), (b, f(b)) coincide.

The interpolation error

ε(x) = f(x) − F (x) (11)

shows the deviation between interpolating and interpolated functions at the given point x ∈
[a, b]. Of course,

ε(a) = ε(b) = 0

and
ε(x) ≡ 0, x ∈ [a, b]

if f(x) is a linear function.

In the previous example we had only two interpolation points, x = x0 = a, x = x1 = b.
Now let us consider the case of linear (piecewise linear) interpolation with the use of several
interpolation points spaced at equal intervals:

xk = a + kh; k = 0, 1, 2, . . . ,M, h =
b− a
M

; M = 2, 3, . . . . (12)

For a given integer M we construct the interpolating function F (M ; x) which is piecewise linear
and which agrees with f(x) at the M + 1 interpolation points (see Fig. 2).

In each subinterval [xk, xk+1] we determine F (M ; x) by linear interpolation using the formula
(5). Thus we have for x ∈ [xk, xk+1]

F (M ; x) = f(xk) +
x− xk

xk+1 − xk
(f(xk+1)− f(xk)). (13)
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If we denote fk = f(xk) and use the first forward difference ∆fk = fk+1 − fk we obtain

F (M ; x) = fk + (x− xk)
∆fk
h
, x ∈ [xk, xk+1]. (14)

One can calculate interpolation error by the formula (11) in each subinterval and, obviously,

ε(xk) = 0, k = 0, 1, 2, . . .M. (15)

EXAMPLE 1 Linear Lagrange interpolation

Compute ln 9.2 from ln 9.0 = 2.1972 and ln 9.5 = 2.2513 by the linear Lagrange interpolation
and determine the error from a = ln 9.2 = 2.2192 (4D).

Solution. Given (x0, f0) and (x1, f1) we set

L0(x) =
x− x1

x0 − x1
, L1(x) =

x− x0

x1 − x0
,

which gives the Lagrange polynomial

p1(x) = L0(x)f0 + L1(x)f1 =
x− x1

x0 − x1
f0 +

x− x0

x1 − x0
f1.

In the case under consideration, x0 = 9.0, x1 = 9.5, f0 = 2.1972, and f1 = 2.2513. Calculate

L0(9.2) =
9.2− 9.5
9.0− 9.5

= 0.6, L1(9.2) =
9.2− 9.0
9.5− 9.0

= 0.4,

and get the answer

ln 9.2 ≈ ã = p1(9.2) = L0(9.2)f0 + L1(9.2)f1 = 0.6 · 2.1972 + 0.4 · 2.2513 = 2.2188.

The error is ε = a− ã = 2.2192− 2.2188 = 0.0004.

Quadratic interpolation corresponds to the interpolation by polynomials of degree n = 2
when we have three (different) nodes x0, x1, x2. The Lagrange polynomials of degree 2 have
the form

l0(x) =
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
;

l1(x) =
(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
;

l2(x) =
(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
. (16)

Now let us form the sum

P2(x) = f0l0(x) + f1l1(x) + f2l2(x). (17)

The following statements hold:
1) P2(x) again is a polynomial of degree 2;
2) P2(xj) = fj, because among all terms, only lj(xj) 6= 0;
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3) if there is another polynomial Q2(x) of degree 2 such that Q2(xj) = fj, then R2(x) =
P2(x)−Q2(x) is also a polynomial of degree 2, which vanishes at the 3 different points x0, x1, x2,
or, in other words, the quadratic equation R2(x) = 0 has three different roots; therefore,
necessarily, R2(x) ≡ 0.

Hence (17), or, what is the same, the Lagrange interpolation formula yields the uniquely
determined interpolation polynomial of degree 2 corresponding to the given interpolation points
and ordinates.

Example. For x0 = 1, x1 = 2, x2 = 4 the Lagrange polynomials (16) are:

l0(x) =
x− 2
1− 2

x− 4
1− 4

=
1
3

(x2 − 6x+ 8);

l1(x) =
x− 1
2− 1

x− 4
2− 4

= −1
2

(x2 − 5x+ 4);

l2(x) =
x− 1
4− 1

x− 2
4− 2

=
1
6

(x2 − 3x+ 2).

Therefore,

P2(x) =
f0

3
(x2 − 6x+ 8)− f1

2
(x2 − 5x+ 4) +

f2

6
(x2 − 3x+ 2). (18)

If to take, for example, f0 = f2 = 1, f0 = 0, then this polynomial has the form

P2(x) =
1
2

(x2 − 5x+ 6) =
1
2

(x− 2)(x− 3)

and it coincides with the given ordinates at interpolation points (see Fig. 3 where the curve for
P2(x) on the interpolation interval [1, 4] is bold):

P2(1) = 1; P2(2) = 0; P2(4) = 1.

Evidently, if f(x) is a quadratic function, f(x) = ax2 + bx + c, a 6= 0, then interpolation
process is exact and the function P2(x) from (17) will coincide with f(x).

The interpolation error

ε(x) = f(x) − P2(x) (19)

shows the deviation between interpolation polynomial and interpolated function at the given
point x ∈ [x0, x2]. Of course,

ε(x0) = ε(x1) = ε(x2) = 0

and
r(x) ≡ 0, x ∈ [x0, x2]

if f(x) is a quadratic function.

EXAMPLE 2 Quadratic Lagrange interpolation

Compute ln 9.2 from ln 9.0 = 2.1972, ln 9.5 = 2.2513, and ln 11.0 = 2.3979 by the quadratic
Lagrange interpolation and determine the error from a = ln 9.2 = 2.2192 (4D).

Solution. Given (x0, f0), (x1, f1), and (x2, f2) we set

L0(x) =
l0(x)
l0(x0)

=
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
,
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L1(x) =
l1(x)
l1(x1)

=
(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
,

L2(x) =
l2(x)
l2(x2)

=
(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
,

which gives the quadratic Lagrange polynomial

p2(x) = L0(x)f0 + L1(x)f1 + L2(x)f2.

In the case under consideration, x0 = 9.0, x1 = 9.5, x2 = 11.0 and f0 = 2.1972, f1 = 2.2513,
f2 = 2.3979. Calculate

L0(x) =
(x− 9.5)(x− 11.0)

(9.0− 9.5)(9.0− 11.0)
= x2 − 20.5x+ 104.5, L0(9.2) = 0.5400;

L1(x) =
(x− 9.0)(x− 11.0)

(9.5− 9.0)(9.5− 11.0)
=

1
0.75

(x2 − 20x+ 99), L1(9.2) = 0.4800;

L2(x) =
(x− 9.0)(x− 9.5)

(11.0− 9.0)(11.0− 9.5)
=

1
3

(x2 − 18.5x+ 85.5), L2(9.2) = −0.0200

and get the answer

ln 9.2 ≈ p2(9.2) = L0(9.2)f0 + L1(9.2)f1 + L2(9.2)f2 =

0.5400 · 2.1972 + 0.4800 · 2.2513− 0.0200 · 2.3979 = 2.2192,

which is exact to 4D.

The Lagrange polynomials of degree n = 2, 3 . . . are

l0(x) = w0
1(x)w0

2(x) . . . w0
n(x);

lk(x) = wk0(x)wk1(x) . . . wkk−1(x)wkk+1 . . . w
k
n(x), k = 1, 2 . . . , n− 1; (20)

ln(x) = wn0 (x)wn1 (x) . . . wnn−1(x),

where

wkj (x) =
x− xj
xk − xj

; k = 0, 1, . . . n, j = 0, 1, . . . n, k 6= j. (21)

Furthermore,

lk(xk) = 1,
lk(xj) = 0, j 6= k. (22)

The general Lagrange interpolation polynomial is

Pn(x) = f0l0(x) + f1l1(x) + . . . + fn−1ln−1(x) + fnln(x),
n = 1, 2, . . . (23)

and it uniquely determines the interpolation polynomial of degree n corresponding to the given
interpolation points and ordinates.
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Error estimate is given by

εn(x) = f(x)− pn(x) = (x− x0)(x− x1) . . . (x− xn)
fn+1(t)
(n+ 1)!

,

n = 1, 2, . . . , t ∈ (x0, xn)

if f(x) has a continuous (n+ 1)st derivative.

EXAMPLE 3 Error estimate of linear interpolation

Solution. Given (x0, f0) and (x1, f1) we set

L0(x) =
x− x1

x0 − x1
, L1(x) =

x− x0

x1 − x0
,

which gives the Lagrange polynomial

p1(x) = L0(x)f0 + L1(x)f1 =
x− x1

x0 − x1
f0 +

x− x0

x1 − x0
f1.

In the case under consideration, x0 = 9.0, x1 = 9.5, f0 = 2.1972, and f1 = 2.2513. and

ln 9.2 ≈ ã = p1(9.2) = L0(9.2)f0 + L1(9.2)f1 = 0.6 · 2.1972 + 0.4 · 2.2513 = 2.2188.

The error is ε = a− ã = 2.2192− 2.2188 = 0.0004.
Estimate the error according to the general formula with n = 1

ε1(x) = f(x)− p1(x) = (x− x0)(x− x1)
f ′′(t)

2
, t ∈ (9.0, 9.5)

with f(t) = ln t, f ′(t) = 1/t, f ′′(t) = −1/t2. Hence

ε1(x) = (x− 9.0)(x− 9.5)
(−1)
t2

, ε1(9.2) = (0.2)(−0.3)
(−1)
2t2

=
0.03
t2

(t ∈ (9.0, 9.5)),

0.00033 =
0.03
9.52 = min

t∈[9.0,9.5]

∣∣∣∣0.03
t2

∣∣∣∣ ≤ |ε1(9.2)| ≤ max
t∈[9.0,9.5]

∣∣∣∣0.03
t2

∣∣∣∣ =
0.03
9.02 = 0.00037

so that 0.00033 ≤ |ε1(9.2)| ≤ 0.00037, which disagrees with the obtained error ε = a − ã =
0.0004. In fact, repetition of computations with 5D instead of 4D gives

ln 9.2 ≈ ã = p1(9.2) = 0.6 · 2.19722 + 0.4 · 2.25129 = 2.21885.

with an actual error
ε = 2.21920− 2.21885 = 0.00035

which lies in between 0.00033 and 0.00037. A discrepancy between 0.0004 and 0.00035 is thus
caused by the round-off-to-4D error which is not taken into acount in the general formula for
the interpolation error.

Estimation by the error principle. First we calculate

p1(9.2) = 2.21885
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and then
p2(9.2) = 0.54 · 2.1972 + 0.48 · 2.2513− 0.02 · 2.3979 = 2.21916

from EXAMPLE 2 but with 5D. The difference

p2(9.2)− p1(9.2) = 2.21916− 2.21885 = 0.00031

is the approximate error of p1(9.2): 0.00031 is an approximation of the error 0.00035 obtained
above.

The Lagrange interpolation formula (23) is very unconvenient for actual calculation. More-
over, when computing with polynomials Pn(x) for varying n, the calculation of Pn(x) for a
particular n is of little use in calculating a value with a larger n. These problems are avoided
by using another formula for Pn(x), employing the divided differences of the data being
interpolated.

Assume that it is given the grid of points x0, x1, x2, . . . ; xi 6= xj, i 6= j and corresponding
values of a function f(x) : f0, f1, f2, . . .

The first divided differences are defined as

f [x0, x1] =
f1 − f0

x1 − x0
; f [x1, x2] =

f2 − f1

x2 − x1
; . . . (24)

The second divided differences are

f [x0, x1, x2] =
f [x1, x2]− f [x0, x1]

x2 − x0
; (25)

f [x1, x2, x3] =
f [x2, x3]− f [x1, x2]

x3 − x1
; . . . (26)

and of order n

f [x0, x1, . . . , xn, xn+1] =
f [x1, x2, . . . , xn+1]− f [x0, x1, . . . xn]

xn+1 − x0
. (27)

It is easy to see that the order of x0, x1, x2, . . . , xn will not make a difference in the calculation
of divided difference. In other words, any permutation of the grid points does not change the
value of divided difference. Indeed, for n = 1

f [x1, x0] =
f0 − f1

x0 − x1
=

f1 − f0

x1 − x0
= f [x0, x1].

For n = 2, we obtain

f [x0, x1, x2] =
f0

(x0 − x1)(x0 − x2)
+

f1

(x1 − x0)(x1 − x2)

+
f2

(x2 − x0)(x2 − x1)
. (28)

If we interchange values of x0, x1 and x2, then the fractions of the right-hand side will inter-
change their order, but the sum will remain the same.

When the grid points (nodes) are spaced at equal intervals (forming the uniform grid),
the divided difference are coupled with the forward differences by simple formulas. Set
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xj = x0 + jh, j = 0, 1, 2, . . . and assume that fj = f(x0 + jh) are given. Then the first
forward difference is

f [x0, x1] = f [x0, x0 + h] =
f(x0 + h)− f(x0)

x0 + h− x0
=

f1 − f0

h
=

∆f0

1!h
. (29)

For the second forward difference we have

f [x0, x1, x2] =
1

2h

(
∆f1

1!h
− ∆f0

1!y

)
=

∆2f0

2!h2 (30)

and so on. For arbitrary n = 1, 2, . . .

f [x0, x0 + h, . . . , x0 + nh] =
∆nf0

n!hn
. (31)

It is easy to calculate divided differences using the table of divided differences

x0 f(x0)
f [x0, x1]

x1 f(x1) f [x0, x1, x2]
f [x1, x2] f [x0, x1, x2, x3]

x2 f(x2) f [x1, x2, x3]
f [x2, x3] f [x1, x2, x3, x4] . . .

...
... . . .

f [xn−1, xn]
xn f(xn)

Construct the table of divided differences for the function

f(x) =
1

1 + x2 ,

at the nodes xk = kh, k = 0, 1, 2, . . . , 10 with the step h = 0.1.
The values of fk = f(xk) are found using the table of the function 1

x
with (fixed number of)

three decimal places. In the first column we place the values xk, in the second, fk, and in the

third, the first divided difference f [xk, xk+1] =
∆fk
h

, etc.:

0.0 1.000
−0.100

0.1 0.990 −0.900
−0.280 0.167

0.2 0.962 −0.850
−0.450

0.3 0.917

Let Pn(x) denote the polynomial interpolating f(x) at the nodes xi for i = 0, 1, 2, . . . , n.
Thus, in general, the degree of Pn(x) is less or equal n and

Pn(xi) = f(xi), i = 0, 1, 2, . . . n. (32)
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Then

P1(x) = f0 + (x − x0)f [x0, x1]; (33)
P2(x) = f0 + (x − x0)f [x0, x1] + (x − x0)(x − x1)f [x0, x1, x2] (34)

.

.

.

Pn(x) = f0 + (x − x0)f [x0, x1] + . . .

+ (x − x0)(x − x1)(x − xn−1)f [x0, x1, . . . xn]. (35)

This is called the Newton’s divided difference formula for the interpolation polynomial.
Note that for k ≥ 0

Pk+1 = Pk(x) + (x − x0) . . . (x − xk)f [x0, x1, . . . xk+1]. (36)

Thus we can go from degree k to degree k+ 1 with a minimum of calculation, once the divided
differences have been computed (for example, with the help of the table of finite differences).

We will consider only the proof of (33) and (34). For the first case, one can see that
P1(x0) = f0 and

P1(x1) = f0 + (x1 − x0)
f(x1) − f(x0)

x1 − x0

= f0 + (f1 − f0) = f1.

Thus P1(x) is a required interpolation polynomial, namely, it is a linear function which satisfies
the interpolation conditions (32).

For the formula (34) we have the polynomial of a degree ≤ 2

P2(x) = P1(x) + (x − x0)(x − x1)f [x0, x1, x2] (37)

and for x0, x1

P2(xi) = P1(xi) + 0 = fi, i = 0, 1.

Also,

P2(x2) = f0 + (x2 − x0)f [x0, x1] + (x2 − x0)(x2 − x1)f [x0, x1, x2]
= f0 + (x2 − x0)f [x0, x1] + (x2 − x1)(f [x1, x2] − f [x0, x1])

= f0 + (x1 − x0)f [x0, x1] + (x2 − x1)f [x1, x2]
= f0 + (f1 − f0) + (f2 − f1) = f2.

By the uniqueness of interpolation polynomial this is the quadratic interpolation polynomial
for the function f(x) at x0, x1, x2.

In the general case the formula for the interpolation error may be represented as follows

f(x) = Pn(x) + εn(x), x ∈ [x0, xn] (38)

where x0, x1, . . . , xn are (different) interpolation points, Pn(x) is interpolation polynomial con-
structed by any of the formulas verified above and εn(x) is the interpolation error.
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EXAMPLE 4 Newton’s divided difference interpolation formula

Compute f(9.2) from the given values.

8.0 2.079442
0.117783

9.0 2.197225 −0.006433
0.108134 0.000411

9.5 2.251292 −0.005200
0.097735

11.0 2.397895

We have
f(x) ≈ p3(x) = 2.079442 + 0.117783(x− 8.0)−

0.006433(x− 8.0)(x− 9.0) + 0.000411(x− 8.0)(x− 9.0)(x− 9.5).

At x = 9.2,

f(9.2) ≈ 2.079442 + 0.141340− 0.001544− 0.000030 = 2.219208.

We can see how the accuracy increases from term to term:

p1(9.2) = 2.220782, p2(9.2) = 2.219238, p3(9.2) = 2.219208.

Note that interpolation makes sense only in the closed interval between the first (minimal)
and the last (maximal) interpolation points.

The Newton’s interpolation formula (35) becomes especially simple when interpolation
points x0, x0 + h, x0 + 2h, . . . are spaced at equal intervals. In this case one can rewrite
(38) using the formulas for divided differences and introducing the variable

r =
x− x0

h
(39)

such that

x = x0 + rh, x− x0 = rh, (x− x0)(x− x0 − h) = r(r − 1)h2, . . . (40)

Substituting this new variable into (13) and (16) we obtain the Newton’s forward difference
interpolation formula

f(x) ≈ Pn(x) = f0 + r∆f0 +
r(r − 1)

2!
∆2f0 + . . .+

r(r − 1) . . . (r − n+ 1)
n!

∆nf0. (41)

Error estimate is given by

εn(x) = f(x)− pn(x) =
hn+1

(n+ 1)!
r(r − 1) . . . (r − n)fn+1(t),

n = 1, 2, . . . , t ∈ (x0, xn)

if f(x) has a continuous (n+ 1)st derivative.
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EXAMPLE 5 Newton’s forward difference formula. Error estimation

Compute cosh(0.56) from the given values and estimate the error.
Solution. Construct the table of forward differences

0.5 1.127626
0.057839

0.6 1.185645 0.011865
0.069704 0.000697

0.7 1.255169 0.012562
0.082266

0.8 1.337435

In (39), we have

x = 0.56, x0 = 0.50, h = 0.1, r =
x− x0

h
=

0.56− 0.50
0.1

= 0.6

and

cosh(0.56) ≈ p3(0.56) = 1.127626+0.6·0.057839+
0.6(−0.4)

2
·0.011865+

0.6(−0.4)(−1.4)
6

·0.000697 =

1.127626 + 0.034703− 0.001424 + 0.000039 = 1.160944.

Error estimate. We have f(t) = cosh(t) with f (4)(t) = cosh(4)(t) = cosh(t), n = 3,
h = 0.1, and r = 0.6, so that

ε3(0.56) = cosh(0.56)− p3(0.56) =
(0.1)4

(4)!
0.6(0.6− 1)(0.6− 2)(0.6− 3) cosh(4)(t) = A cosh(t),

t ∈ (0.5, 0.8)

where A = −0.0000036 and

A cosh 0.8 ≤ ε3(0.56) ≤ A cosh 0.5

so that
p3(0.56) + A cosh 0.8 ≤ cosh(0.56) ≤ p3(0.56) + A cosh 0.5.

Numerical values
1.160939 ≤ cosh(0.56) ≤ 1.160941
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PROBLEM 17.3.1

Compute ln 9.3 from ln 9.0 = 2.1972 and ln 9.5 = 2.2513 by the linear Lagrange interpolation
and determine the error from a = ln 9.3 = 2.2300 (exact to 4D).

Solution. Given (x0, f0) and (x1, f1) we set

L0(x) =
x− x1

x0 − x1
, L1(x) =

x− x0

x1 − x0
,

which gives the Lagrange polynomial

p1(x) = L0(x)f0 + L1(x)f1 =
x− x1

x0 − x1
f0 +

x− x0

x1 − x0
f1.

In the case under consideration, x0 = 9.0, x1 = 9.5, f0 = 2.1972, and f1 = 2.2513.

L0(x) =
x− 9.5
(−0.5)

= 2(9.5− x) = 19− 2x, L1(x) =
x− 9.0

0.5
= 2(x− 9) = 2x− 18.

The Lagrange polynomial is
p1(x) = L0(x)f0 + L1(x)f1 =

(19−2x)2.1972+(2x−18)2.2513 = 2x(2.2513−2.1972)+19·2.1972−18·2.2513 = 0.1082x+1.2234.

Now calculate
L0(9.3) =

9.3− 9.5
9.0− 9.5

= 0.4, L1(9.3) =
9.3− 9.0
9.5− 9.0

= 0.6,

and get the answer

ln 9.3 ≈ ã = p1(9.3) = L0(9.3)f0 + L1(9.3)f1 = 0.4 · 2.1972 + 0.6 · 2.2513 = 2.2297.

The error is ε = a− ã = 2.2300− 2.2297 = 0.0003.

PROBLEM 17.3.2

Estimate the error of calculating ln 9.3 from ln 9.0 = 2.1972 and ln 9.5 = 2.2513 by the linear
Lagrange interpolation (ln 9.3 = 2.2300 exact to 4D).

Solution. We estimate the error according to the general formula with n = 1

ε1(x) = f(x)− p1(x) = (x− x0)(x− x1)
f ′′(t)

2
, t ∈ (9.0, 9.5)

with f(t) = ln t, f ′(t) = 1/t, f ′′(t) = −1/t2. Hence

ε1(x) = (x− 9.0)(x− 9.5)
(−1)
t2

, ε1(9.3) = (0.3)(−0.2)
(−1)
2t2

=
0.03
t2

(t ∈ (9.0, 9.5)),

0.00033 =
0.03
9.52 = min

t∈[9.0,9.5]

∣∣∣∣0.03
t2

∣∣∣∣ ≤ |ε1(9.3)| ≤ max
t∈[9.0,9.5]

∣∣∣∣0.03
t2

∣∣∣∣ =
0.03
9.02 = 0.00037

so that 0.00033 ≤ |ε1(9.3)| ≤ 0.00037, which disagrees with the obtained error ε = a−ã = 0.0003
because in the 4D computations we cannot round-off the last digit 3. In fact, repetition of
computations with 5D instead of 4D gives

ln 9.3 ≈ ã = p1(9.3) = 0.4 · 2.19722 + 0.6 · 2.25129 = 0.87889 + 1.35077 = 2.22966
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with an actual error
ε = 2.23001− 2.22966 = 0.00035

which lies between 0.00033 and 0.00037. A discrepancy between 0.0003 and 0.00035 is thus
caused by the round-off-to-4D error which is not taken into acount in the general formula for
the interpolation error.

PROBLEM 17.3.3

Compute e−0.25 and e−0.75 by linear interpolation with x0 = 0, x1 = 0.5 and x0 = 0.5, x1 = 1.
Then find p2(x) interpolating e−x with x0 = 0, x1 = 0.5, and x2 = 1 and from it e−0.25 and
e−0.75. Compare the errors of these linear and quadratic interpolation.

Solution. Given (x0, f0) and (x1, f1) we set

L0(x) =
x− x1

x0 − x1
, L1(x) =

x− x0

x1 − x0
,

which gives the Lagrange polynomial

p1(x) = L0(x)f0 + L1(x)f1 =
x− x1

x0 − x1
f0 +

x− x0

x1 − x0
f1.

In the case of linear interpolation, we will interpolate ex and take first the nodes x0 = −0.5
and x1 = 0 and f0 = e−0.5 = 0.6065 and f1 = e0 = 1.0000.

L0(x) =
x− 0
(−0.5)

= −2x, L1(x) =
x+ 0.5
(0.5)

= 2(x+ 0.5) = 2x+ 1.

The Lagrange polynomial is
p1(x) = L0(x)f0 + L1(x)f1 =

−2x · 0.6065 + (2x+ 1)1.0000 = 2x(1.0000− 0.6065) + 1 = 2 · 0.3935x+ 1.

The answer

e−0.25 ≈ p1(−0.25) = −0.25 · 2 · 0.3935 + 1 = 1− 0.1967 = 0.8033.

The error is ε = e−0.25 − p1(−0.25) = 0.7788− 0.8033 = −0.0245.
Now take the nodes x0 = −1 and x1 = −0.5 and f0 = e−1 = 0.3679 and f1 = e−0.5 = 0.6065.

L0(x) =
x+ 0.5
(−0.5)

= −2(x+ 0.5) = −2x− 1, L1(x) =
x+ 1
(0.5)

= 2(x+ 1).

The Lagrange polynomial is
p1(x) = L0(x)f0 + L1(x)f1 =

(−2x−1)·0.3679+(2x+2)0.6065 = 2x(0.6065−0.3679)−0.3679+2·0.6065 = 2·0.2386x+0.8451.

The answer

e−0.75 ≈ p1(−0.75) = −0.75 · 2 · 0.2386 + 0.8451 = −0.3579 + 0.8451 = 0.4872.

The error is ε = e−0.75 − p1(−0.75) = 0.4724− 0.4872 = −0.0148.
In the case of quadratic interpolation, we will again interpolate ex and take the nodes

x0 = −1, x1 = −0.5, and x2 = 0 and f0 = e−1 = 0.3679, f1 = e−0.5 = 0.6065 and f2 = 1.0000.
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Given (x0, f0), (x1, f1), and (x2, f2) we set

L0(x) =
l0(x)
l0(x0)

=
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
,

L1(x) =
l1(x)
l1(x1)

=
(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
,

L2(x) =
l2(x)
l2(x2)

=
(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
,

which gives the quadratic Lagrange polynomial

p2(x) = L0(x)f0 + L1(x)f1 + L2(x)f2.

In the case under consideration, calculate

L0(x) =
(x+ 0.5)(x)
(−0.5)(−1)

= 2x(x+ 0.5);

L0(−0.25) = −0.5 · 0.25 = −0.125, L0(−0.75) = (−1.5) · (−0.25) = 0.375.

L1(x) =
(x+ 1)(x)
(0.5)(−0.5)

= −4x(x+ 1);

L1(−0.25) = 1 · 0.75 = 0.75, L1(−0.75) = 3 · 0.25 = 0.75.

L2(x) =
(x+ 1)(x+ 0.5)

(1)(0.5)
= 2(x+ 0.5)(x+ 1);

L2(−0.25) = 0.5 · 0.75 = 0.375, L2(−0.75) = (−0.5) · 0.25 = −0.125.

The answers are as follows:

e−0.25 ≈ p2(−0.25) = L0(−0.25)f0 + L1(−0.25)f1 + L2(−0.25)f2 =

−0.1250 · 0.3679 + 0.7500 · 0.6065 + 0.3750 · 1.0000 = −0.0460 + 0.4549 + 0.3750 = 0.7839.

The error is ε = e−0.25 − p2(−0.25) = 0.7788− 0.7839 = −0.0051..

e−0.75 ≈ p2(−0.75) = L0(−0.75)f0 + L1(−0.75)f1 + L2(−0.75)f2 =

0.3750 · 0.3679 + 0.7500 · 0.6065− 0.1250 · 1.0000 = 0.1380 + 0.4549− 0.1250 = 0.4679.

The error is ε = e−0.75 − p2(−0.75) = 0.4724− 0.4679 = 0.0045..
The quadratic Lagrange polynomial is

p2(x) = L0(x)f0 + L1(x)f1 + L2(x)f2 =

2x(x+ 0.5) · 0.3679− 4x(x+ 1) · 0.6065 + 2(x+ 0.5)(x+ 1) · 1.0000 = 0.3095x2− 0.9418x+ 1.

PROBLEM 17.3.5 (quadratic interpolation)

Calculate the Lagrange polynomial p2(x) for 4-D values of the Gamma-function Γ(x) =
∫ ∞

0
e−ttx−1dt,

Γ(1.00) = 1.0000, Γ(1.02) = 0.9888, and Γ(1.04) = 0.9784, and from it the approximation of
Γ(1.01) and Γ(1.03).
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Solution. We will interpolate Γ(x) taking the nodes x0 = 1.00, x1 = 1.02, and x2 = 1.04 and
f0 = 1.0000, f1 = 0.9888, and f2 = 0.9784.

Given (x0, f0), (x1, f1), and (x2, f2) we set

L0(x) =
l0(x)
l0(x0)

=
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
,

L1(x) =
l1(x)
l1(x1)

=
(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
,

L2(x) =
l2(x)
l2(x2)

=
(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
,

which gives the quadratic Lagrange polynomial

p2(x) = L0(x)f0 + L1(x)f1 + L2(x)f2.

In the case under consideration, calculate

L0(x) =
(x− 1.02)(x− 1.04)

(−0.02)(−0.04)
= 1250(x− 1.02)(x− 1.04);

L0(1.01) =
(−0.01)(−0.03)
(−0.02)(−0.04)

=
3
8

= 0.375, L0(1.03) =
(0.01)(−0.01)

(−0.02)(−0.04)
= −1

8
= −0.125.

L1(x) =
(x− 1)(x− 1.04)

(0.02)(−0.02)
= −2500(x− 1)(x− 1.04);

L1(1.01) =
(0.01)(−0.03)
(0.02)(−0.02)

=
3
4

= 0.75, L1(1.03) =
(0.03)(−0.01)
(0.02)(−0.02)

=
3
4

= 0.75.

L2(x) =
(x− 1)(x− 1.02)

(0.04)(0.02)
= 1250(x− 1)(x− 1.02);

L2(1.01) =
(0.01)(−0.01)
(0.04)(0.02)

= −1
8

= −0.125, L1(1.03) =
(0.03)(0.01)
(0.04)(0.02)

=
3
8

= 0.375.

The answers are as follows:

Γ(1.01) ≈ p2(1.01) = L0(1.01)f0 + L1(1.01)f1 + L2(1.01)f2 =

0.3750 · 1.0000 + 0.7500 · 0.9888− 0.1250 · 0.9784 = 0.3750 + 0.7416− 0.1223 = 0.9943.

The error is ε = Γ(1.01)− p2(1.01) = 0.9943− 0.9943 = 0.0000. The result is exact to 4D.

Γ(1.03) ≈ p2(1.03) = L0(1.03)f0 + L1(1.03)f1 + L2(1.03)f2 =

−0.1250 · 1.0000 + 0.7500 · 0.9888 + 0.3750 · 0.9784 = −0.1250 + 0.7416 + 0.3669 = 0.9835.

The error is ε = Γ(1.03)− p2(1.03) = 0.9835− 0.9835 = 0.0000. The result is exact to 4D.
The quadratic Lagrange polynomial is

p2(x) = L0(x)f0 + L1(x)f1 + L2(x)f2 =

1250(x−1.02)(x−1.04)·1.0000−2500(x−1)(x−1.04)·0.9888+1250(x−1)(x−1.02)·0.9784 =

= x2(1250(·1.9784− 2 · 0.9888)) + . . . = x2(1250((2− 0.0216)− 2(1− ·0.0112))) + . . . =

x2(1250(−0.0216+2·0.0112))+. . . = x2(1250·0.0008)+. . . = x2·1.000+. . . = x2−2.580x+2.580.
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PROBLEM 17.3.11 (Newton’s forward difference formula )

Compute Γ(1.01), Γ(1.03), and Γ(1.05) by Newton’s forward difference formula.
Solution. Construct the table of forward differences

1.00 1.0000
0.0112

1.02 0.9888 0.0008
0.0104

1.04 0.9784

From Newton’s forward difference formula, we have

x = 1.01, 1.03, 1.05; x0 = 1.00, h = 0.02, r =
x− 1
h

= 50(x− 1);

p2(x) = f0 + r∆f0 +
r(r − 1)

2
∆2f0 = 1.000− 0.0112r + 0.0008

r(r − 1)
2

= x2 − 2.580x+ 2.580,

which coincides with the quadratic interpolation polynomial derived above. Therefore, we can
perform direct calculations to obtain

Γ(1.01) ≈ p2(1.01) = 0.9943, Γ(1.03) ≈ p2(1.03) = 0.9835, Γ(1.05) ≈ p2(1.05) = 0.9735.

PROBLEM 17.3.13 (Lower degree )

What is the degree of the interpolation polynomial for the data (1,5), (2,18), (3,37), (4,62),
(5,93)?

Solution. We find the polynomial proceeding from an assumption that it has the lowest
possible degree n = 2 and has the form p2(x) = ax2 + bx + c. In fact, it is easy to check that
the required polynomial is not a linear function, Ax+B, because

A+B = 5
2A+B = 18

yields A = 13 and B = −8, and

3A+B = 37
4A+B = 62

yields A = 25 and B = −38.
For the determination of the coefficients a, b, c we have the system of three linear algebraic

equations

a+ b+ c = 5,
4a+ 2b+ c = 18
9a+ 3b+ c = 37

Subtracting the first equation from the second and from the third, we obtain

3a+ b = 13
8a+ 2b = 32
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or

6a+ 2b = 26
8a+ 2b = 32

which yields 2a = 6, a = 3, b = 13− 3a = 4, and c = 5− b− a = −2.
Thus, the desired polynomial of degree n = 2 is p2(x) = 3x2 + 4x− 2.
It is easy to see that p2(1) = 5, p2(2) = 18, p2(3) = 37, p2(4) = 62, and p2(5) = 93.
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