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ABSTRACT

The requirements which UDS are submitted to in respect of pol-
lutants emission are ever increasing. Alone or in combination with
sanitation/restructuration measures, RTC becomes ever more wi-
despread in Europe. The automatic determination of an reliable on-
line control strategy constitutes however a difficult problen,
whose methodological approach is still object of research.

In our configuration, a strategy is determined by a knowledge ba-
sed system (so called expert system) and is proposed for valida-
tion to the operator. The propagation/acceptation of such a system

is hindered due to the lack of straightforward methods to develop
a knowlecdge base. In Urban Hydrology, the situation is made even
worse, because experience/knowledge about the true behaviour of
UDS under loading is generally not available or if existing, dif-
ficult to put into the required form. This situation may however
compietly change, if efficient learn-algorithms exist, by means of
which a gradual and automatic refinement of a first implemented

knowledge base is made possible through simulation.




In our study, two learn-modules (one based on the use of so called
meta-rules, the second one based on classification algorithms)
have been implemented into a knowledge based system, which itself
is connected to a hydraulic simulation program. For an artificial
UDS, long term simulations have examplarily been performed. The
modifications in decision making are traced back and discussed for
both learn-processes.
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l. Introduction

To improve the performances of UDS, RTC in combination with other measures is
becoming widespread. The determination of set points in the control elements is
difficult during a rainfall event, even if experienced people are on command. A rule
based system (RBS) could facilitate the decision making at least by delivering its
recommendations, but the acceptation of such a control configuration is hampered by
uncertainties. For a given UDS, reliable knowledge about its behaviour is often not
directly available; and if existing, it must be put into the required form of a consistent
and complete set of rules. If efficient learning algorithms could be implemented on line,
they would insure a gradual and automatic refinement of the initial control rules.
Several learning modules were developed in Hannover and tested in off line

simulations. This paper briefly present the basic principles of learning and describe a
study case.

Il. Short description of a learning cycle

Fig. 1 shows the sequence of treatments in a learning RBS. It is differentiated
between knowledge and meta-knowledge. Knowledge data is stored in files and
programmes and copes with the determination of a control strategy at a given time
step. Meta-knowledge is stored in files and programmes and describes the "learning
path".

While learning, the RBS constantly evaluates the UDS performances and modify the

control rules if, according to the meta-knowledge, improvement is expected. Evaluation
criteria are:

1. occurrence, amount and frequency of flooding

2. occurrence, amount and frequency of CSO’s

3. occurrence, duration and frequency of pressure flow in the pipes

4. energy consumption of the control gages or other security requirements.

A learning cycle consists of three tasks:

/I



1. detection and collection of situations, where a questionable control strategy is
determined

2. Modification of control set points at the relevant control elements

3. construction of new control rules
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Fig. 1: Data Treatment Sequences in a RBS with learning capabilities (off line
simulation)

At every decision step, the current situation in the UDS is evaluated by meta-rules.
They check up, whether disturbances take place, which are possibly caused by
inappropriate control decisions. If need be, the values of relevant state variables are
stored in a so-called "situation-file". Parallely, the control set points are analysed,
modified and stored in the same file. The construction of new control rules is only
achieved, after many situations have been collected. This prevents from "learning in
the false direction".

First modules were developed by Neumann, Fuchs and Miiller (1987). The present

one has following characteristics, which ensure a greater independence between the
treatment steps.

- Meta-rules only intervene in the detection of questionable situations

- Modifications of the set points rely on information separately stored in a file "logic of
control". ‘

- For generation of new rules, the canal situations are classified by means of an
algorithm first described by Wishart (see Bock, 1974), which is controlled by two
parameters: the minimal class density and the minimal distance between two
separate classes. If these parameters are correctly evaluated, one obtains a good
recognition of the data clouds. A very accurate pattern recognition may however
produce the generation of many (very specific) rules, whose validity domains are so
small that they become almost insignificant.

lil. Study case

Ill.1 Description of the UDS

The selected UDS is inspired from real combined UDS in Northern Germany. its
central part (see Fig. 2) is composed of two pipe storage capacities PSC1 and PSC2.
Two retention basins RB1 and RB2 are connected to PSC1. Every pump has at most
5 flow rates values (= discontinuous flow control). The pipe transport is controlled by 3



pump stations (P1, P2; P3). P3 controls the inflow rates to the Treatment Plant (TP). If
it pumps more than the TP maximal capacity CSO occurs. Pump station P4/P5

controls the access to retention basin RB2.
The runoff-inflows are generated by 5 identical subcatchments (C1-C5). Each one has

10 ha impervious area and 10 ha pervious area.

C5 C4 C3 C2 C1
max 0,256 m3/s P3 PSC2 =507 m3 P2 PSC1 =462 m3 P1 RB1

] D D KD || 1o ms
@cso Ps@ @ P4 @cso

Legend

RBi : Retention Bassin Nr.i RB2
PSCi : Storage Capacity in the Pipes 2000 m3
Pi :Pump Nr.i
CSO : Combined Sewerage Overflow @CSO
ICi  : Catchment Nr. |

Fig. 2: simplified representation of the UDS from the control point of view
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Fig. 3: Description of the UDS for the connected hydraulic transport model

lll.2 Modelling of the flow processes
The rainfall and surface runoff processes are simulated with an hydrologic model
according to the "method of the standard unit hydrograph" (HYSTEM). The generated



inflow waves (not influenced by the control strategy) are stored in one file, which is
read by the hydraulic model (EXTRAN) for a detailed simulation of the transport
processes.

In order to reduce the amount of computation (without much distorting the results), the
pipe system was divided into a central part and a peripheral part. In the central part the
transport processes (see Fig. 2 and Fig. 3) are simulated with the detailed hydraulic
model. The "peripheral" transport, which takes place in each of the 5 subcatchments is
globally accounted for in the hydrologic simulation of the inflow waves. This
simplification required an analysis of the transport rainfall-runoff-transport
characteristics in the subcatchments and a calibration of the runoff simulation.

lIl.3 Description of the local strategy (= initial strategy)
First simulations were done with EXTRAN not connected to the RBS. In this case, only
one state variable can be considered for the control of each pump Pi, i=1,5: the water
level in its pump pit (see Tab. 1). A local strategy was then elaborated according to
following principles:
- the more water in the pipes, the higher the flow rates in the transport pumps
- if there is any danger of flooding in PSC1, the retention basin RB2 should be filled
up.

This local strategy was translated into a set of control rules, which describes the initial
strategy in simulation with the RBS.

Pump | Function Flow rate |[switch® |switch [pressure [ flooding
name (m3/s) point1 |[point2 |flow level |level
(m) (m) (m) (m)
P1 transport in 0.032 1 1.0 6.0
the pipes 0.200 2 0.8
0.400 3 1.8
0.700 4 2.8
1.000 3.8
P2 transport in 0.096 0.3 0.90 3.5
the pipes 0.192 0.5 0.15
0.500 0.7 0.35
0.800 0.9 0.55
1.000 0.75
P3 transport to 0.128 2.0 1.0 4.0
the TP 0.256 3.0 1.8
0.500 3.5 2.8
0.700 3.9 3.3
1.000 3.7
P4 Fill RB2 0.000 0.5 0.90 3.0
0.500 1.0 0.3
1.000 1.2 0.8
1.500 1.5 1.0
2.000 1.3
P54 |[no emptying| 0.000 - - 0.90 3.0
of RB2
Tab. 1: Description of the local strategy

1Every water level (m) in Tab.1 is related to the bottom level of the connected pipes. Switch
point 1 is valid, if the water level in the pump pit increases and switch point 2, when it
decreases.

2The hydraulic programme can not itself simulate the emptying of a retention bassin, because
other state variables as the water level in the "pump pit" (=bassin) are required to make a
decision (i.e rainfall intensities, water levels in the transport pipes). In the initial strategy,
however, such conditions have been included so that the emptying phase may also be
simulated.



IV. Analysis of the initial local strategy with design rainfalls

The selected rainfall data were recorded in Bremen (North Germany) during 1955-
1985. After statistical analysis, four design rainfalgDRi i=1,4 were constructed and
used to evaluate the local strategy (see Tab. 2 and Tab. 3).

Design |return |[duration |height |runoff vol. 3(m3) [max. runoff flow
Rainfall | period | (min) (mm) |imp+perv=tot rate (m3/s)
a
DR1 (1) 15 9.3 608+ 41= 649 0.422
DR2 |5 15 14.5 [1035+561=1596 0,762
DR3 |1 30 11.7 8054+101= 906 0.423
DR4 |5 30 17.9 13204721=2041 0,765
Tab. 2: Rainfall runoff characteristics of selected design rainfall
Design total vol. to the | max. flooding | max stored [max.  stored
Rainfall TP (m3) vol. in S8|vol. in RB1|vol. in RB2
(m3/s) (m3) (m3)
DR1 4944 818 316 0
DR2 5881 2801 1088 884
DR3 6204 1399 400 52
DR4 6181 3788 600 1505

Tab. 3: Evaluation of the UDS performances with selected design rainfall

The results show that according to German standards the pipes are not under-
dimensioned . For events DR1 and DR3 (return period of 1 year), flooding at the
weakest point of the system (S8 in PSC2) could have been avoided, if the available
storage capacity had been fully used. For events DR2 and DR4 (return period of 5
years) the available storage capacity (3969 m3) is anyway insufficient. But, even in this
case, the retention basins are not fully filled. In term of control decision, it can be
concluded that:

- P1 pumps too much in PSC1 (RB1 is not fully used)

- P2 pumps too much in PSC2 (flooding occurs)

- P4 pumps too little in RB2 (unused storage capacity)

V. Learning process

In accordance with the previous analysis, learning concentrates on P1 (5 meta-rules) ,
P2 (6 meta-rules), P4 (7 meta-rules). The simulated real events must be so selected,
that they generate a significant number of situations, in which local control is not
appropriate. On the whole period 1955-1985, every rainfall was listed with following
separation criterion: rainfall intensity < 0.1 mm/5min during more than 2 hours. The
261 detected events were ordered according to the mean rainfall intensity and 16 were
finally retained: 12 among the 20 strongest events, the remaining 4 ones are medium
(places 76-82). The shortest event lasts 45min, the longest 2h40min. In Tab. 4 and
Tab. 5, the rule basis before and after learning (70 cycles) is evaluated.

In all 16 events, flooding volumes and durations of pressure flow decrease4. Except
event No2, the number of flooding spots is also reduced. However, improvement is not
be achieved for every evaluation criteria:
-In all events the necessary delay to empty the UDS after rainfall is longer (VOL2
increases)

- In the strongest events, less flooding implies more CSO volumes.

3Runoff volumes and maximal flow rates in Tab. 1 are related to a single subcatchment Ci,
i=1,5
4A learning step takes place each time all 16 events have been simulated.



It must also be noticed, that the inflow volumes to the TP have been hardly affected.
No "learning" has taken place for P3.

No. | QINF VOL1 VOL2 Nb of|corresp. | max. CSO vol |VTP vol.
(m3) (m3) (m3) flooding | pres. flow | FLVOL | (m3) (m3)
pts () |duration |(m3)
(min)
1 |28 191 |614 1 266 |6 265 12 759 | 9 194 18 301
2 |25 952 |614 1 295 |5 272 10 803 | 7 937 17 321
3 24 287 |614 1 075 5 295 6 858 7 026 16 789
4 21 202 |614 808 5 200 4 767 5 519 15 490
5 20 703 |613 1 012 5 259 4 727 5 186 15 124
6 6 134 |612 315 1 0 0 0 6 521
7 14 608 |614 601 5 120 2 485 2 078 12 565
8 12 836 |614 604 5 96 1 696 1178 11 710
5 |11 919 |614 591 |5 67 1 064 728 11 236
10 |10 895 |615 545 |4 33 375 0 11 007
11 | 9 738 | 614 595 |2 4 70 0 9 823
12 |11 143 |613 575 |5 52 779 385 | 10 827
13 | 9 482 |612 580 |1 0 1 0 9 565
14 | 9 433 [613 588 1 9 116 0 9 505
15 8 217 | 614 587 1 3 3 0 8 338
16 | 9 487 |613 590 |2 14 241 0 9 557

Tab. 4: Evaluation® of the control strategy before learning (simulation interval: 10h)

QINF : total volume of runoff
vOL1 : sewage volume stored in the pipes, when the event begins
VOL2 : sewage volume in the system after simulation

pres. flow duration : addition of the durations of pressure flow at every flooding spots
max. FLVOL : addition of the max. flooding volumes at every flooding spots

CSO - CSO volume without consideration of the possible CSO’s in the TP
VTP  total sewage volume pumped into the TP during the simulation (10h)
No. | QINF VOL1 VOL2 Nb  of|corresp. |max. CSO vol |VTP vol.
(m3) (m3) (m3) flooding | pres. flow | FLVOL [(m3) (m3)
pts () |duration |(m3)
(min)
1 [28 191 |615 1 746 6 179 8 561 | 9 412 17 688
2 |25 952 |615 2 066 6 180 6 590 | 8 046 16 503
3 |24 287 [613 1 679 5 81 2 171 | 7 946 15 347
4 |21 202 |613 1 427 4 69 1 638 | 6 130 14 355
5 |20 703 |614 1 535 3 66 1179 | 6 028 13 844
6 6 134 [613 509 1 0 0 0 6 406
7 |14 608 [612 1 233 5 46 1 083 | 2 206 11 891
8 |12 836 |612 1 216 2 24 561 | 1 281 11 102
9 |11 919 |e612 799 2 17 287 | 1 207 10 766
10 [10 895 |612 883 1 10 146 554 10 324
11 | 9 738 |613 959 1 4 29 0 9 629
12 [11 143 [613 950 2 14 363 391 10 685
13 | 9 482 |615 960 0 0 0 0 9 336
14 | 9 433 |613 707 2 4 95 0 9 567
15 | 8 217 |612 865 1 0 0 0 8 193
16 | 9 487 |614 828 1 6 114 0 9 495

Tab. 5: Evaluation of strategy after 70 learning steps (simulation interval: 10h)

A detailed analysis of the learning process shows that most improvements are
achieved in the first 20 learning steps. As an example, Fig. 4 shows the evolution of

SFor all 16 events, a period of 10 hours after beginning of the rainfall has been simulation.



flooding volumes and pressure flow durations at S8 during rainfall event No 5. After
the 20th learning step, the UDS behaviour at the critical spots (S3, S4, S5, $6, S8)
"oscillates" without significant trends. The limited size of the knowledge basis is mainly
responsible for this. In its constant effort to improve the performance, more and more
new rules are generated, until the storage capacity is exhausted. At this time, a certain
amount of stored rules is deleted. Fig. 5 traces the number of stored rules in the RBS
during learning. From the 20th |learning step onward, the maximal computer storage
capacity is reached. Now and then, existing rules must be erased to make some place
for the newcomers. But even if the computer storage were unlimited, oscillations would

probably still happen because of the necessary restrictions in the storage-transport
capacity of the UDS.
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Fig. 4: Evolution of flooding vol. and pressure flow dur. at S8 in event No 5
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VI. Conclusions



Learning algorithms were developed to automatically improve control rules. The
necessary meta-knowledge does not require much computer storage capacity and
proves efficient. However, its formulation necessitates a careful analysis of the uDS
behaviour at the initial state. The paper focuses on a specific learning algorithm, which
can very accurately classify the state variables. The advantage is that no undue
generalisation happens. The shortcoming is that many rules are generated, so that the
computer storage capacity may be exhausted and learning oscillate.
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