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ABSTRACT

A numerical method for the identification of parameters of nonlinear higher order differential equa-
tions is presented, which is based on the Levenberg-Marquardt algorithm. The estimation of the
parameters can be performed by using several reference data sets simultaneously. This leads to a
multicriteria optimization problem, which will be treated by using the Pareto optimality concept.
In this paper, the emphasis is put on the presentation of the calibration method. As an example
identification of the parameters of a nonlinear hydrological transport model for urban runoff is
included, but the method can be applied to other problems as well.
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INTRODUCTION

In urban hydrology, lumped parameter conceptual models are widely used, because they need substan-
tially less computing time than the more detailed hydrodynamic models. This is of major importance
for implementing a real time control system. Another purpose is their usage as a supplementary
tool in hydrodynamic simulation of simplified descriptions of sewer systems (Eberl et al, 1996). The
disadvantage of this kind of models, however, is, that they are not capable of describing hydraulic
problems in the sewer system like backwater effects or submerging. The basic idea behind them is
to consider the whole sewer system as one single reservoir or as a combination of some reservoirs.
Besides the equation describing the conservation of mass in the reservoir an additional equation must
be established, that describes the volume of water inside the reservoir as a function of its outflow
(Becker and Glos, 1969) or vice versa. In the past, mainly linear models were used but we should
relax this restriction because of the nonlinearity of the flow processes in the sewer system. Since these
models have only poor physical meanings — in fact, they can be considered as nothing but a structured
black box — model parameters cannot be derived directly from observations but have to be estimated

using measurements of the entire process or empirical and statistical relations. For linear models
the solution of the governing differential equation could be undertaken in a closed form and param-
eter identification reduces to classical nonlinear regression. Here, however, we are concerned with
nonlinear models and therefore with the problem of parameter identification for ordinary differential
equations. 61
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The method discussed in the sequel can be used for the estimation of the parameter vector a =
(01, .., an)T of any higher order lumped model

dmy dy dm~1y
W,{ =~7:<t7yaz'a"’ W;uaa (1)

where ¢ is the independent variable (time in our case), u = u(t) the model input and y = y(t; @) the
model output, i.e. the outflow of the sewer system in our case. Equation (1) can be transformed into
a system of m first order differential equations for the vector valued function ¥ = (i1, .., %, )T with
Ym = y. It follows
dipy
dt

= fr(t,Y5u,a) r=1,.,m (2)

For our purposes, equation (2) is the basic model equation. Combination of several reservoirs imme-
diately leads to (2) as the formulation of the total model. Equation (1) will not be needed in this
case. More than one model input could be taken into consideration, but surface runoff will be the
only one in hydrological conceptual sewer system models.

PARAMETER IDENTIFICATION
Objective function for parameter identification

The identification of the model parameter vector & = (ay, .., @n)T will be executed by mathematical
optimization. For this purpose, an objective function must be established. Our goal is calibrating
the model by the use of k reference data sets simultaneously. We can not expect, however, to achieve
the same parameter for each of these data sets by separately solving the related scalar minimization
problems. We, therefore, will formulate and solve a multicriteria optimization problem. As a criterion
for the comparison of reference data and computed model output we will use the least square criterion.
In runoff hydrology this choice is often rejected with the argument, that even a small time shift in
the computed solution can result in a big least square error and hence other criteria are proposed
(e.g. Khelil and Semke, 1991). But indeed, this is not a problem of the least square criterion: if a
systematical time shift error is observed then the model can be reformulated by adding a time shift
parameter an41 = 7. Especially, if our ultimate goal is to apply the calibrated model for forecasting
within real time control, any time shift should be avoided.

The vector optimization problem can be formulated as

T
miy [ - w(tie)'de, i1k (3)

0

where §;() denotes the measured values for the system outflow belonging to the input data u;(¢) and
Yi(t; @) = ¥m,i(t; @) is the model output of equations (1) or (2), respectively, with model parameter
a. A is the set of admissible @. No optimization concept analogous to scalar optimization exists
for this type of problem, but there are some other optimality concepts for multicriteria optimization,
like Pareto Optimum, Nash Equilibrium or the Min-Max-Solution (Stadler, 1988). Which of them
can be successfully employed depends on the nature of the problem. We will use the Pareto concept,
because it is suitable for coalition problems, where all the scalar objectives should be minimized
simultaneously, whereas the remaining concepts are more suitable for noncoalition problems, where
the minimization of one scalar objective can be achieved at the cost of maximization of any of the
others. A parameter & is called Pareto minimal if and only if for all & € A holds
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T
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It can not be expected to find a unique Pareto minimum. Moreover, an infinite number will exist.
We are interested in only one of them, so an additional choice has to be made. This choice will be
subjective in any case. It can be shown (e.g. Stadler, 1988) that minimization of any scalar function

Z of the scalar partial objectives Z; = foT(ﬁ(t)i —yi(t;a))?dt results in a Pareto minimum if

0z
0Z;

>0, Vi=1,.k (5)

The most simple approach is to use a linear weighting scalarization function
E T
Z(@) =Y wizi(a) =3 w; /(g,-(t) —u(ta)dt, w0 Vi=1,.k ©)
= )

= =1

Compared to more complicated functions, a big advantage of this function Z — at least from a
numerical point of view — is that the least square structure of the problem is conserved. One can
imagine several choices for w;, for example:

k T
w;=1 or w; - /ﬁidt = Z/]}jdt Vi=1,.,k (7.a,b)
0

In the first case, every data set has the same weight, in the second, they are weighted with regard to
their total runoff.

Optimization scheme: the Levenberg-Marquardt algorithm

To solve the optimization problem (6) numerical methods are available which explicitly use the least
square structure. Since the problem may be ill-posed (Groetsch, 1988) we should concentrate on meth-
ods with regularisation properties. A standard technique amongst them is the Levenberg-Marquardt
algorithm which is described for example in Marquardt, 1963. It combines the major advantages
of the steepest descent and the Gauss-Newton methods. On one hand, it initially does quick steps
towards the minimum, on the other hand it provides quadratic convergence in the vicinity of the
minimum. The interpolation is automatically done by a factor A which decreases while converging
towards the minimum and should be 0 in a sufficient small neighborhood of the minimum, which
means that at the end of the iteration a strict Gauss-Newton method is used. In every Levenberg-
Marquardt iteration step the gradient and the Hessian of the objective function must be computed
once but in order to choose an optimal A some more evaluations of the ob jective function itself may
be necessary.

Depending on the construction of the conceptual model the admissible set A can be bounded by
some constraints. So far, only linear constraints were obtained in our studies. For this purpose,
the Levenberg-Marquardt algorithm, which is used in the interior of A, is coupled with a method
analogous to the projective gradient method, that is described in Ritter and Kredler (1992) in order
to deal with these constraints at the boundaries of A.
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Computing the gradient and Hessian of the objective function

The determination of the gradient of the objective function Z with respect to the parameter « is of high
importance for both, the Levenberg-Marquardt algorithm as well as the projective gradient method,
because optimization actually is done by searching for the zeros of this gradient and, therefore, some
emphasis should be placed on the accuracy of this computation. The gradient is given by

- 6% F_
601] = —2Zw,/ dt j=1.,n (8)

and the Hessian, which is needed for the Levenberg-Marquardt algorithm, reads

T
82Z yi ayi By,» .
sesom = 2w (0 -w) 5 5~ e gt =L ©

=1 0

Because a closed form of the model output y of (1) is unknown and only a numerical approximation
n can be achieved some considerations on the approximation of the a—‘?;, which appear in the gradient
and in the Hessian, should be done.

The most simple approach of course is numerical differentiation of the numerical solution. This
approach is well known and often used. Using a one-sided difference operator it is given by

. t,a+ Aaje;) — n(t, a .
fa) = M A’a;) nthe) iy, (10)

O
6(1]‘

where e; is the unit vector in j—direction and Ac; is the stepsize. But the problem of choosing the
stepsize arises. Since o; may vary from a small to a large value during the iteration — especially if no
good initial value is a priori known - choosing A relative to the actual size of o (say 2%) may be
convenient, but this will fail if «; itself is approximately 0. Then an a priori fixed value Aa; should
be used in which case it might happen, that the step size is of the same order or even bigger than the
value itself.

Another ansatz can be obtained from differentiating the model equation (2) with respect to @;. In
vector notation it yields
By _of  0f %

0t0a;  0Oaj a 0a,

J=1n (11)

where f = (fi,.., fu)T. After substituting p; = % the gradient of model output y = ¥, can be
computed by the linear differential equation systems

dp; f of .
k. B ; =1,..n.

dt aa] + awtph J y e (12)
In this equation for every a; the coefficient functions are approximately known a priori, since an
approximation n for y can be computed. The disadvantage of the numerical differentiation in the
previous approach is avoided here,

A third method for computing the gradient of the objective function is the differentiation of the
numerical solver for the differential equation, which we will not discuss further in this paper.

In all three approaches, computing the gradient of Z for any parameter o requires the additional
numerical solution of k- n differential equation systems: following the first one (Eq. (10)), the model
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(2) must be computed to determine n(t,a + Aaje;), the second one (Eq. (11)) requires to solve the
linear system (12) in order to get the ¢;.

Some remarks on the computing of the Hessian — which is needed in the Levenberg-Marquardt al-
gorithm — should be added. Computing the Hessian plays a minor role, compared to computing
the gradient, because using an approximation for the Hessian has no effect on the solution of the
optimization problem. There are only effects on the convergence of the method and on the numerical
effort. A whole class of methods for nonlinear algebraic equations, the so called quasi Newton meth-
ods, is based on this idea. If we take a look at the formula (9) for the Hessian, we realize that the
second derivative term appears together with the factor §; — y;. If our model describes the processes
well we can assume, that at least in the vicinity of the optimal & € A this factor is very small. In
addition we can assume, that the sign of this factor is not constant if we are concerned with real
world measurements and therefore integrated along the time axis this error will compensate itself to
some degree. Furthermore, if we neglect the effect of this error additional regularisation of the data
will be achieved. Thus, we decided to neglect the second order derivation term in (9).

Solving the ordinary differential equation and computing of the objective function

The last module in our parameter identification scheme is a solver for ordinary differential equations
to evaluate y and gc%. Though methods with stepsize control and variable order like the Runge-
Kutta-Fehlberg RKF7(8) method (Stoer and Bulirsch, 1990), are state of art, we will use a scheme
with fixed step size and we do this for a good reason. Because we are interested in a least square
solution and in most cases the reference data are only given by a discrete set, we should compute
the solution and the gradient of the model for the same time set where reference data are available.
If we are using automatic stepsize control techniques for this computation, interpolation of data will
be necessary. This can be avoided by using a fixed time step scheme, for example the 4th order
Runge-Kutta RK4 method (Stoer and Bulirsch, 1990). The approximation 7(t) of the solution of (2)
obtained by a one-step method like RK4 can be interpreted as a piecewise linear function. In most
cases the reference data function §j(t) is obtained by piecewise (linear) interpolation of discrete data.
Thus, the integrands of (3) are piecewise polynomials and the objective function can be calculated
directly without additional discretization errors. The same holds for the computing of the gradient
and the Hessian.

NONLINEAR CONCEPTUAL MODELS FOR SEWER SYSTEMS

We are concerned with nonlinear higher order conceptual models for sewer systems, which are con-
structed by combining m nonlinear single reservoir models. They are represented by

d ; . m-—1 .
ft = hi(¥i; 4) | yiu + Z Biji—wi|, i=1,.,m (13.a)

i=1

m m
z%‘=1, Zﬂij=1, ¥i20, Bi;20 Vj=1,.,m-1, i=1,.,m (13.5)
i=1 =1

Parameters 7;, ¢ = 1,..,m, determine the distribution of the total input u on the m reservoirs and
parameters f;;, i = 1,..,m — 1, j = 1,..,m determine the portion of the outflow of the jth reservoir,
which is an inflow for the ith reservoir, i.e. the fi; define the combination of the single reservoirs.

The outflow ¥ = y is the total outflow of the system. The function h; describes the ith reservoir
and &; = (c1,..,1)7 is the model parameter vector of the ith reservoir. Some types of reservoirs are

h linear reservoir, Becker and Glos (1969) (14.a)
h =19 ezponential reservoir, Becker and Glos (1969) (14.b)

h=+/e1+e®, ¢ >0 quadratic reservoir, Diskin et.al. (1984) (14.c)

1l
1)
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The distribution parameters v; and f;; can be either fixed @ priori during the model building proce:
or a posterior: as part of the parameter identification process. Since we have not considered automatic
optimization of model structures, we made a priori choices for the ;. For example, a cascade of m
reservoirs with automatically distributed total inflow is described by 8;; =1forj =i—1,i=2,...,m
and B;; = 0 otherwise. The model parameter vector @, which has to be estimated, consists of the
reservoir parameters &; and the a posteriors distribution parameters ;.

SOME NUMERICAL RESULTS

Constructing a model, one should be aware, that with increasing number of free parameters the
probability to achieve a good fit for one single reference data set will increase, too. But the optimum
parameter vector for one reference data set might differ from the best choice for another reference
data set. Moreover, increasing the number of free parameters can increase the number of local or even
global minima. For example, if we consider two parallel reservoirs of the same type, interchanging
the parameters of the reservoirs will de facto yield the same model, but the minimization problem
(6) has two different solutions. Therefore, the total number of parameters should be kept small.

In the following, the results for a small sewer system with a total drainage area of 0.16km? and
a total length of 2.5km will be given. The detailed description for hydrodynamic simulation has
62 elements. The model used was a cascade of identical exponential reservoirs with automatically
distributed input. It was observed that best results are achieved with one or two reservoirs in this
example. The latter case will be presented here. The model equation with free parameters a;, as, a;
can be summarized as

% = a1 (a;u(t) - 1,[;1)

d_;/)t_z = o133 ((1 —az)u(t) +¥1(t) - ,/,2(,5))

0<a3<1 (15

It should be mentioned, that the classical cascade of linear reservoirs is included in this model for
ay = 0 and a3 = 1. Five storm events were used for calibration, another five ones for verification.
Instead of real world measurement data, smooth and artificially disturbed (up to 15%) results from
hydrodynamic simulation were used.

Table 1. Parameters a; and the least square error x (relative to reference
data) for single data calibration of five storm events (smooth data);

storm 1 2 3 4 )

o 0.152 0.111 0.123 0.180 0.148
) 0.238 0.131 0.324 0.165 0.143
a3 0.633 0.045 0.490 0.764 0.403
x[%] 0.04 02 008 009 0.19

From Table 1 it can be seen, that no unique optimum parameter is achieved by single data calibration
for several storm events. Identification results of multiple data calibration for different weighting
factors (7.a), (7.b) are shown in Table 2, where Z,; is the value of the objective function relative
to reference data. Comparing Table 1 and Table 2 indicates, that none of the single data optimum
parameters is also best choice for multiple data calibration. The optimum parameters are not the same
for different weighting factors, but the differences are much smaller than for single data calibration.
In both cases (7.a) and (7.b) the relative error is of about the same order, (see Table 2). Of course,

it must be larger for perturbed data than for smooth data. The estimated parameters are nearly the
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Table 2. Results of multiple data calibration: parameters a; and value of objective
function Z,e; for weighting factors (7.a) and (7.b), smooth and disturbed data

(7.a) smooth (7.b) smooth (7.a) dist. (7.b) dist.

o 0.1542 0.1575 0.1539 0.1575
o 0.1614 0.1949 0.1622 0.1952
o 0.4823 0.5924 0.4824 0.5926
Zret%) 0.215 0.185 0.714 0.683

outflow [m"3/min]

o 10 20 30 40 50 60
time [min]

Figure 1. Calibrated model output and reference data for storm 1, smooth and disturbed
data, weighting factors according to (7.a)

same for smooth and disturbed data in both cases (7.a) and (7.h). A graphical comparison of smooth

and perturbed data calibration is given in Figure 1. It can be seen that the calculated outflow is
identical in both cases.

To judge the results of the parameter identification and the model, however, we must take a look at
the verification data sets (Table 3 and Figure 2). The least square errors in the second collection of
these data sets No. 6-10, which are computed with the parameters estimated from data sets No. 1-5,
are of the same order. This means that both, the model structure and the estimated parameters can
be accepted.

Table 3. Relative least square error x for smooth calibration data sets 1-5 and
smooth verification data sets 6-10; N 1is the number of data points

storm 1 2 3 4 5 6 7 8 9 10
X(r.0)[%] 0.258 0.227 0.155 0.222 0.207 0.154 0.193 0.163 0.093 0.374

x.py[%] 0.101 0.261 0.128 0.129 0.306 0.072 0.239 0.093 0.119 0.098
N 60 120 120 120 60 120 60 120 120 60

The values obtained for a; and a3 indicate that in all cases the best choice calibrated model is distinct
from the widely used classical cascade of linear reservoirs.



68 H. EBERL et al.

35 T T T T T
£ storml ref. Ld
P storml cal. ------
30 7 x storm3 ref. + 1
4, #:‘ storm3 cal.
/ & storm7 ref. =}
25 | 4 L storm?7 ver. ---- -
/ \ storm9 ref. x
? & storm9 ver.
b 3
{ &

outflow [m*3/min]

time [min]

Figure 2. Results of model parameter identification: outflow for calibration data sets 1
and 3 (weighting factors according to (7.b)) and verification data sets 7 and 9 compared to
reference data

CONCLUSION

A numerical method for multiple data parameter estimation for nonlinear ordinary differential equa-
tions of higher order was presented. It allows calibration of hydrological transport models for sewer
systems which are much more comprehensive than the ones in current use. Moreover, the simple
example given here shows that the method is able to deal with perturbations in reference data (e.g.
oscillations) in a good way. From the general formulation (13) of hydrologic models one can hope to
derive the best model structure automatically. But this has not been investigated.
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