###------------------------------------------------------------------------------------------ PROGRAM : NIP.pl Version 0.1 FILE NAME : NIP_output_StudyCase_3_sin.txt CONTENTS : Results of NEWTON INTERPOLATION POLYNOMIALS AUTHOR : Amar Khelil, www.khelil.de, 2015, All rights reserved ###------------------------------------------------------------------------------------------ Starts processing : Tue Jun 9 01:21:38 2015 ...................................................................... Function: show_Input_Data ...................................................................... Number of measures n : [ 12] X0 (first measure) : [ 0.000] Delta_X (xi+1 - xi), i=0,n-1 : [ 0.600] (X,Y)[ 0] : ( 0.000, 0.000000000) (X,Y)[ 1] : ( 0.600, 0.564642473) (X,Y)[ 2] : ( 1.200, 0.932039086) (X,Y)[ 3] : ( 1.800, 0.973847631) (X,Y)[ 4] : ( 2.400, 0.675463181) (X,Y)[ 5] : ( 3.000, 0.141120008) (X,Y)[ 6] : ( 3.600, -0.442520443) (X,Y)[ 7] : ( 4.200, -0.871575772) (X,Y)[ 8] : ( 4.800, -0.996164609) (X,Y)[ 9] : ( 5.400, -0.772764488) (X,Y)[ 10] : ( 6.000, -0.279415498) (X,Y)[ 11] : ( 6.600, 0.311541364) ...................................................................... Function: show_b_coeff_1 ...................................................................... Number of measures : [ 12] X0 : [ 0.000] Delta_X : [ 0.600] Xmax : [ 6.600] Values of the b-coefficients of the NIP Beware: They differ from the c-coefficients of the same polynomial in canonical form. b 0 : +0.0000000000 b 1 : +0.9410707890 b 2 : -0.2739525844 b 3 : -0.0990294806 b 4 : +0.0365667694 b 5 : +0.0005467594 b 6 : -0.0012358167 b 7 : +0.0000901550 b 8 : +0.0000148528 b 9 : -0.0000021759 b10 : -0.0000000335 b11 : +0.0000000210 ...................................................................... Function: show_Analysis_Data ...................................................................... Name of interpolated function : [SIN(X)] Number of calculated points n : [ 42] X0 (first calculated point) : [ 0.000] Delta_X (xi+1 - xi), i=0,n-1 : [ 0.300] Number of NIPs considered : [ 2] (e.g. max. b coefficient taken) n of bmax[ 0] : [ 5] n of bmax[ 1] : [ 11] ---------------------------------------------------------------------- [ 0] ANALYSIS OF NIP=N5(x) ---------------------------------------------------------------------- ...................................................................... -1- Function: show_c_coeff (of NIP transposed into canonical form) .......................................................................................... c-coefficients of NIP=N 5(x) in canonical form: c 0 : +0.0000000000 c 1 : +0.9884512209 c 2 : +0.0431998861 c 3 : -0.2237806822 c 4 : +0.0332862131 c 5 : +0.0005467594 ...................................................................... -3- Function: wri_Ys_NIP (output values of interpolation points) ...................................................................... b-coefficients b0 to b5 used: b 0 : +0.0000000000 b 1 : +0.9410707890 b 2 : -0.2739525844 b 3 : -0.0990294806 b 4 : +0.0365667694 b 5 : +0.0005467594 (X,Y) values (interpolated values) (X,Y)[ 0] : ( 0.000, 0.000000000) (X,Y)[ 1] : ( 0.300, 0.294652225) (X,Y)[ 2] : ( 0.600, 0.564642473) (X,Y)[ 3] : ( 0.900, 0.783623830) (X,Y)[ 4] : ( 1.200, 0.932039086) (X,Y)[ 5] : ( 1.500, 0.997280181) (X,Y)[ 6] : ( 1.800, 0.973847631) (X,Y)[ 7] : ( 2.100, 0.863509970) (X,Y)[ 8] : ( 2.400, 0.675463181) (X,Y)[ 9] : ( 2.700, 0.426490131) (X,Y)[ 10] : ( 3.000, 0.141120008) (X,Y)[ 11] : ( 3.300, -0.148212244) (X,Y)[ 12] : ( 3.600, -0.401006492) (X,Y)[ 13] : ( 3.900, -0.568537978) (X,Y)[ 14] : ( 4.200, -0.593697882) (X,Y)[ 15] : ( 4.500, -0.410833892) (X,Y)[ 16] : ( 4.800, 0.054409238) (X,Y)[ 17] : ( 5.100, 0.885249117) (X,Y)[ 18] : ( 5.400, 2.173925155) (X,Y)[ 19] : ( 5.700, 4.021857998) (X,Y)[ 20] : ( 6.000, 6.539808961) (X,Y)[ 21] : ( 6.300, 9.848039466) (X,Y)[ 22] : ( 6.600, 14.076470475) (X,Y)[ 23] : ( 6.900, 19.364841925) (X,Y)[ 24] : ( 7.200, 25.862872164) (X,Y)[ 25] : ( 7.500, 33.730417386) (X,Y)[ 26] : ( 7.800, 43.137631065) (X,Y)[ 27] : ( 8.100, 54.265123391) (X,Y)[ 28] : ( 8.400, 67.304120705) (X,Y)[ 29] : ( 8.700, 82.456624933) (X,Y)[ 30] : ( 9.000, 99.935573022) (X,Y)[ 31] : ( 9.300, 119.964996375) (X,Y)[ 32] : ( 9.600, 142.780180287) (X,Y)[ 33] : ( 9.900, 168.627823377) (X,Y)[ 34] : (10.200, 197.766197026) (X,Y)[ 35] : (10.500, 230.465304810) (X,Y)[ 36] : (10.800, 267.007041937) (X,Y)[ 37] : (11.100, 307.685354681) (X,Y)[ 38] : (11.400, 352.806399817) (X,Y)[ 39] : (11.700, 402.688704055) (X,Y)[ 40] : (12.000, 457.663323477) (X,Y)[ 41] : (12.300, 518.074002972) ---------------------------------------------------------------------- [ 1] ANALYSIS OF NIP=N11(x) ---------------------------------------------------------------------- ...................................................................... -1- Function: show_c_coeff (of NIP transposed into canonical form) .......................................................................................... c-coefficients of NIP=N11(x) in canonical form: c 0 : +0.0000000000 c 1 : +1.0000246629 c 2 : -0.0001428261 c 3 : -0.1663142431 c 4 : -0.0004939005 c 5 : +0.0087732791 c 6 : -0.0002630934 c 7 : -0.0000900869 c 8 : -0.0000308189 c 9 : +0.0000086901 c10 : -0.0000007253 c11 : +0.0000000210 ...................................................................... -3- Function: wri_Ys_NIP (output values of interpolation points) ...................................................................... b-coefficients b0 to b11 used: b 0 : +0.0000000000 b 1 : +0.9410707890 b 2 : -0.2739525844 b 3 : -0.0990294806 b 4 : +0.0365667694 b 5 : +0.0005467594 b 6 : -0.0012358167 b 7 : +0.0000901550 b 8 : +0.0000148528 b 9 : -0.0000021759 b10 : -0.0000000335 b11 : +0.0000000210 (X,Y) values (interpolated values) (X,Y)[ 0] : ( 0.000, 0.000000000) (X,Y)[ 1] : ( 0.300, 0.295521165) (X,Y)[ 2] : ( 0.600, 0.564642473) (X,Y)[ 3] : ( 0.900, 0.783326857) (X,Y)[ 4] : ( 1.200, 0.932039086) (X,Y)[ 5] : ( 1.500, 0.997494978) (X,Y)[ 6] : ( 1.800, 0.973847631) (X,Y)[ 7] : ( 2.100, 0.863209380) (X,Y)[ 8] : ( 2.400, 0.675463181) (X,Y)[ 9] : ( 2.700, 0.427379867) (X,Y)[ 10] : ( 3.000, 0.141120008) (X,Y)[ 11] : ( 3.300, -0.157745678) (X,Y)[ 12] : ( 3.600, -0.442520443) (X,Y)[ 13] : ( 3.900, -0.687766184) (X,Y)[ 14] : ( 4.200, -0.871575772) (X,Y)[ 15] : ( 4.500, -0.977530067) (X,Y)[ 16] : ( 4.800, -0.996164609) (X,Y)[ 17] : ( 5.100, -0.925814828) (X,Y)[ 18] : ( 5.400, -0.772764488) (X,Y)[ 19] : ( 5.700, -0.550684912) (X,Y)[ 20] : ( 6.000, -0.279415498) (X,Y)[ 21] : ( 6.300, 0.016808971) (X,Y)[ 22] : ( 6.600, 0.311541364) (X,Y)[ 23] : ( 6.900, 0.578564191) (X,Y)[ 24] : ( 7.200, 0.794472017) (X,Y)[ 25] : ( 7.500, 0.941364156) (X,Y)[ 26] : ( 7.800, 1.009777042) (X,Y)[ 27] : ( 8.100, 1.002233348) (X,Y)[ 28] : ( 8.400, 0.938139383) (X,Y)[ 29] : ( 8.700, 0.861243549) (X,Y)[ 30] : ( 9.000, 0.851498134) (X,Y)[ 31] : ( 9.300, 1.043967593) (X,Y)[ 32] : ( 9.600, 1.658423084) (X,Y)[ 33] : ( 9.900, 3.044481422) (X,Y)[ 34] : (10.200, 5.748614206) (X,Y)[ 35] : (10.500, 10.611098624) (X,Y)[ 36] : (10.800, 18.903035727) (X,Y)[ 37] : (11.100, 32.515956731) (X,Y)[ 38] : (11.400, 54.219306467) (X,Y)[ 39] : (11.700, 88.004270405) (X,Y)[ 40] : (12.000, 139.536033986) (X,Y)[ 41] : (12.300, 216.740668194) ###------------------------------------------------------------------------------------------ Ends processing : Tue Jun 9 01:21:38 2015 ###------------------------------------------------------------------------------------------